
Pediatric Low Grade Gliomas

David B. Mansur

Case Western Reserve University
Rainbow Babies and Children's Hospital

Adult Brain Tumors

Predisposing Syndromes

- Tuberous Sclerosis, von Hippel Lindau, Gorlin
- Neurofibromatosis "NF"
 - A group of syndromes with neuro-cutaneous manifestations
 - Autosomal Dominant
 - Multiple Café au Lait spots
 - Neurofibromas
 - Brain Tumors

Neurofibromatosis

- **Type 1** (von Recklinghausen)
 - -1:3000
 - Optic pathway gliomas
 - Lisch Nodules

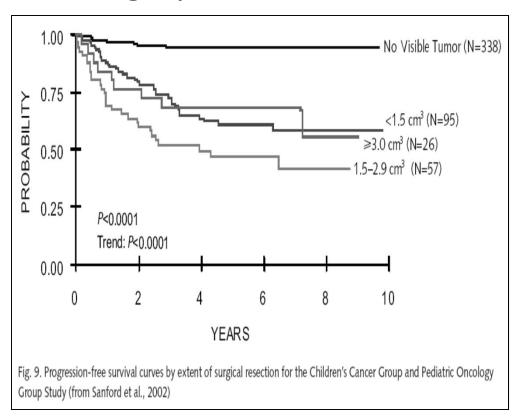
- Axillary/inguinal freckles
- Mental delay
- Sphenoid dysplasia
- Pheochromocytoma
- Renal artery stenosis

• *Type 2*

- -1:50,000
- Bilateral acoustic neuroma
- Meningioma
- Spinal cord ependymoma
- Childhood cataracts

For NF-1 patients, keep in mind:

- Tumors tend to be low grade and slowly growing
- RT complication risk is higher
 - 3x risk of vasculopathy and occlusion of the Circle of Willis: "moyamoya" syndrome
 - 3x increase risk of radiation-induced second malignancies


Surgery

Children's Cancer Group 9891 Pediatric Oncology Group 9130

- Largest Prospective study of surgery for all low grade gliomas in children
- n=660
- Post op RT allowed (if > 1.5 cc residual)
 - (RT not detailed)

CCG 9891 / POG 9130

PFS based on surgery extent:

Shaw Neuro-Oncol 5:153, 2003

Sanford et al (Abstr), 2002

Surgery

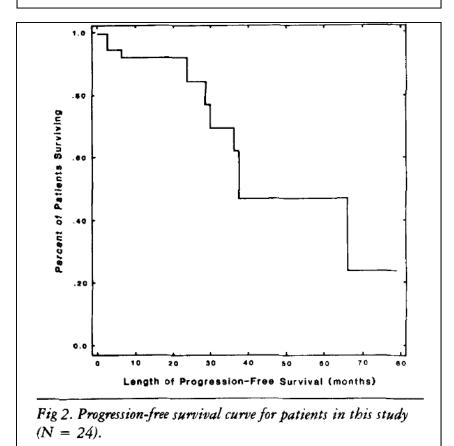
- Gross Total Resection is curative usually
- Subtotal resection has an increased risk of progression, though substantial numbers of patients will be progression-free.

Chemotherapy

Treatment of Chiasmatic/Hypothalamic Gliomas of Childhood with Chemotherapy: An Update

Roger J. Packer, MD,*†‡ Leslie N. Sutton, MD,*§ Larissa T. Bilaniuk, MD,*¶ Jerilynn Radcliffe, PhD,¶ Jeffrey G. Rosenstock, MD,*†† Kathy R. Siegel, PA,* Greta R. Bunin, MD,* Peter J. Savino, MD,*†**

Derek A. Bruce, MD,*‡‡ and Luis Schut, MD*§

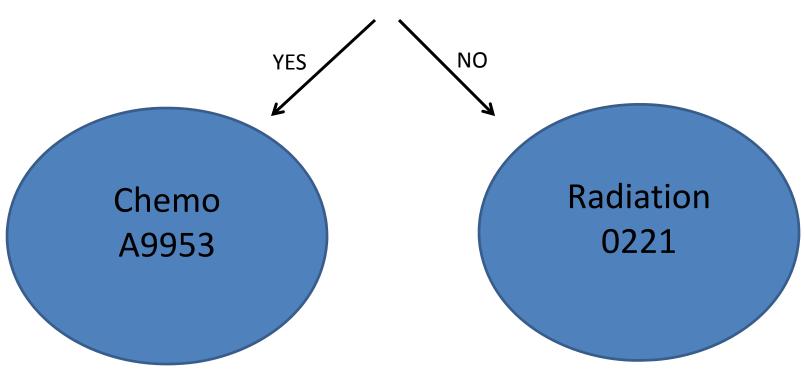

- 24 Children median age 1.6 yrs
- 3 patients with Neurofibromatosis
- Progressive Hypothalamic or Optic pathway tumors
- Biopsy not mandatory
- Accrual 1977 1987
- Actinomycin D and vincristine x 6 cycles

- Median f/u 4.3 years
- Of those getting RT salvage, median age was 4.5 years
- Neuropsych testing in 15 patients:

1 pt severely impaired 14 had mean IQ of 103

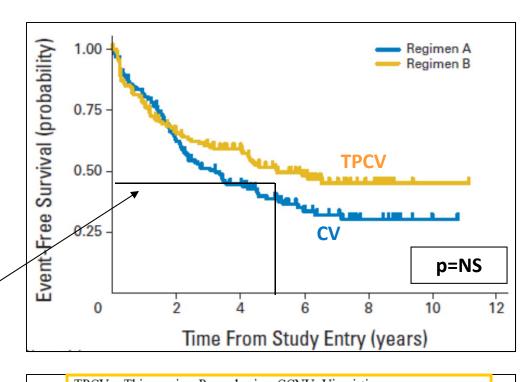
 Chemo Toxicity: 2 pts required admission, some mild paresthesias

Approx 50% PFS at 5 years



Chemotherapy has reasonable activity

Potential to delay the RT with chemotherapy


Children's Oncology Group Approach

Age-specific protocol treatment <10 years?

COG A9952

- Initial Chemotherapy for patients < 10 yr old
- CV vs TPCV
- All low grade gliomas
- n=274
- No NF patients
- Median f/u 5 yrs
- PFS 39 vs 52%

*Patients with neurofibromatosis (NF) will be non-randomly assigned to Regimen A

CBDCA = Carboplatin

VCR = Vincristine

CV

COG ACNS 0223

- A pilot study to test feasibility of
 - Vincristine, Carboplatin, AND Temozolomide (alternating)
- 60 children ≤ 10 yrs (median 4.6 yrs) with unresectable and symptomatic or progressive LGG --grade 1(majority) and 2
- NF1 patients excluded

COG ACNS 0223

- Grade 3 or higher neutropenia in 50%
- Met feasibility endpoints
- 5 yr EFS 46%

Radiation Therapy

Washington University St. Louis Children's Hospital

- 35 children with unresectable pilocytic astrocytoma (Grade 1)
- 1982-2009
- RT alone
- Median dose 54 Gy
- Typically 2 cm margin
- Median f/u 5 years
- No NF patients

Table 1. Patient characteristics				
	1			
Total patients	3			
Gender				
Male	1			
Female	1			
Race				
Caucasian	3			
African-American				
Central nervous system site				
Supratentorial	2			
Optic pathway				
Infratentorial	1			
Spinal cord				
Surgery extent				
Biopsy only	1			
Subtotal	2			
Radiotherapy timing				
Immediate	1			
Delayed (after progression after	1			
observation, or chemotherapy)				
Radiotherapy modality				
External beam only	2			
Radiosurgery only				
External beam and radiosurgery				

Washington University St. Louis Children's Hospital

- Overall survival 100%
- 5 year PFS 68%
- 8/9 patients who progressed did within the irradiated volume

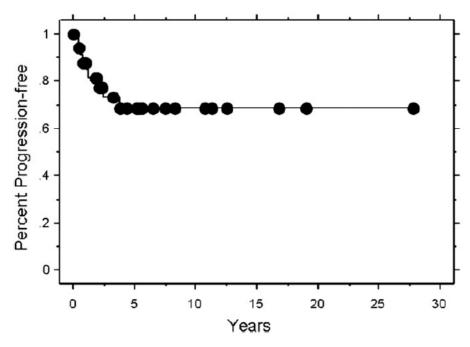
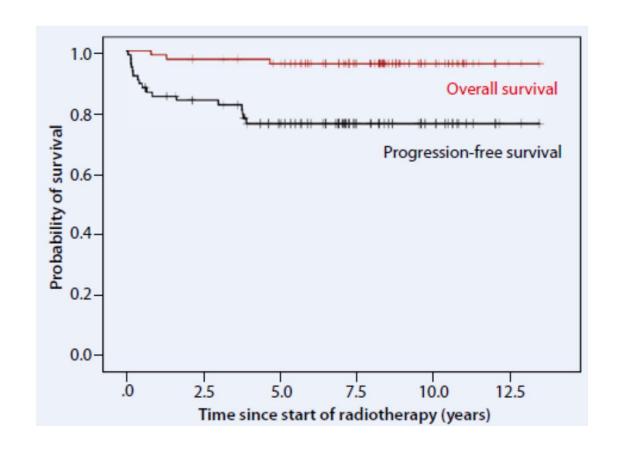


Fig. 1. Progression-free survival for all patients.

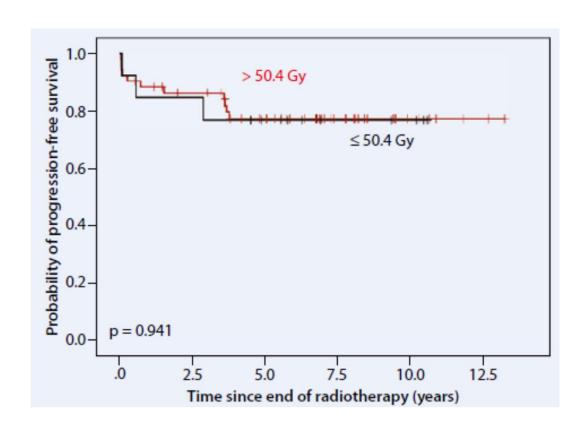

Washington University St. Louis Children's Hospital

Pattern of failure

Patient	Gender	Age at RT (y)	Tumor location	Surgery extent	RT timing	RT dose (Gy)	Failure-free interval (y)	Pattern of failure	Comments	
14	Female	5	Supra	Sub	Im	54	2.5	Local	Symptomatic increase in size, rebiopsy (+)	
16	Female	15	Supra	Sub	Del	54	0.7	Local	Symptomatic increase in size, repeat surgery (+	
18	Male	20	Supra	Sub	Im	15 (RS)	1.3	Local	Symptomatic increase in size, repeat surgery (+	
20	Female	18	Spine	Biopsy	Im	50.4	0.6	Local	Symptomatic increase in size, repeat surgery (+	
24	Male	12	Supra	Biopsy	Im	54	0.5	Local	Symptomatic increase in size, repeat surgery (+	
25	Female	9	Supra	Sub	Del	54	3.8	Local	Symptomatic increase in size, repeat surgery (+	
27	Male	7	Optic	Sub	Del	54	2.0	Distant	Disseminated disease after conformal RT	
29	Female	15	Optic	Biopsy	Del	52.2	1.1	Vision	Progressive vision loss despite RT	
39	Male	8	Supra	Sub	Del	52.2	0.4	Local	Symptomatic increase in size, repeat surgery (+	


Abbreviations: supra = supratentorial; sub = subtotal resection; im = immediate; del = delayed; RS = radiosurgery; RT = radiotherapy.

Pseudoprogression occurs in a minority of patients



German (GPOH)

- German (GPOH) HIT-LGG 1996)
- 117 children
- 10 had NF
- Median age 9 yrs
- Pilocytic astrocytoma
- RT as first or 2nd line treatment
- Median dose 54Gy
- 1-2 cm margins
- Median f/u 8 yrs
- 5 yr PFS 77%

Radiation Therapy Dose

St. Jude Children's – 1 cm margin to CTV

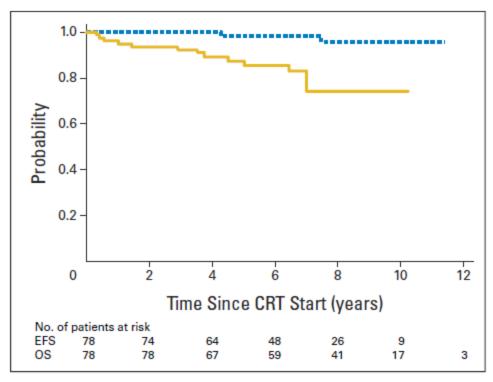
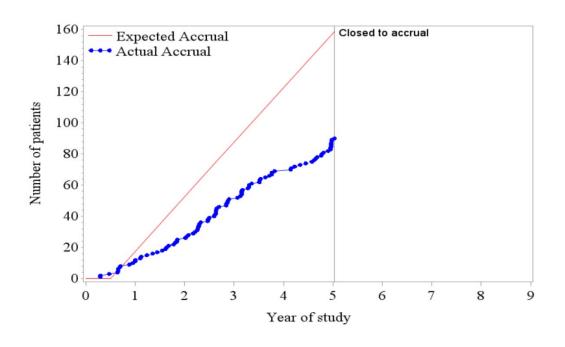
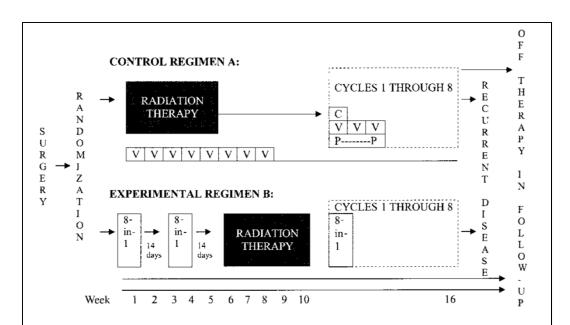



Fig 1. Event-free survival (EFS; gold line) and overall survival (OS; blue line) for pediatric patients with low-grade glioma. Numbers indicate patients at risk. CRT, conformal radiation therapy.

COG ACNS 0221

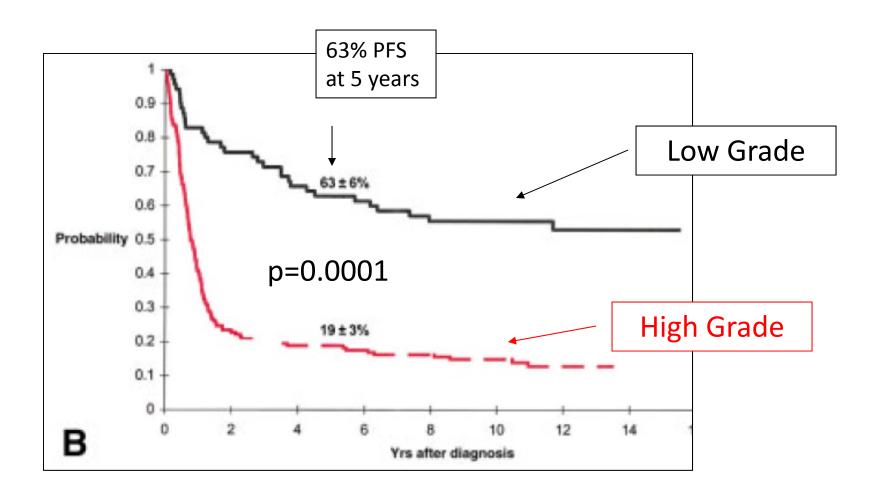
- Conformal RT for all unresectable LGG
- Children 10 yrs and over or younger if progressive after chemotherapy
- 3DCRT, IMRT, protons
- MRI (3 mm) co-registration required
- Pre-treatment central review
- CTV = GTV + 5 mm
- 54 Gy

COG ACNS 0221



- Opened in 2005
- Study amended to decrease target accrual to 75
- Closed to accrual 2010......

Chemo-RT?


Children's Cancer Group - 945

- 70 patients with LGG:
 - 44 Grade II
 - 19 pilocytic,
 - 2 ganglioglioma
 - 7 unspecified low grade
- Originally diagnosed as high grade
 Median f/u 10 years

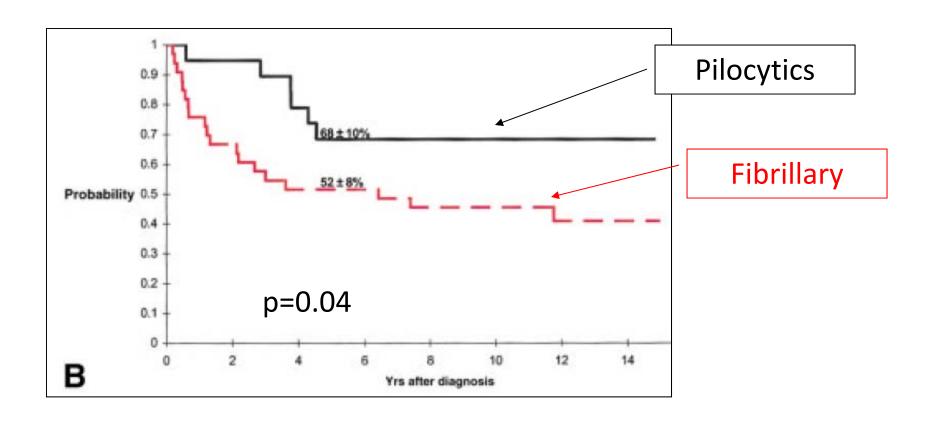


FIGURE 1. Schema for the Children's Cancer Group (CCG) high-grade glioma protocol (CCG-945). Control regimen A consisted of vincristine (V) 1.5 mg/m^2 , lomustine (C) 100 mg/m^2), and prednisone (P) 40 mg/m^2 per day for 14 days. Experimental regimen B consisted of vincristine 1.5 mg/m^2 , lomustine 100 mg/m^2 , procarbazine 75 mg/m^2 , hydroxyurea 3000 mg/m^2 , cisplatin 90 mg/m^2 , mannitol 12 gm/m^2 , cytarabine 300 mg/m^2 , dacarbazine 150 mg/m^2 , and methylprednisolone 300 mg/m^2 for 3 doses.

CCG – 945 progression-free surv

CCG – 945 progression-free surv

Management Conclusions

- Gross Total Resection is usually curative
- Subtotal resection has an increased risk of progression, though substantial numbers of patients will be progression-free.
- Progressive unresectable disease is an indication for additional treatments
- PFS for chemotherapy is 40-50%, benefit of adding Temodar not clear
- PFS for RT is 70-80%, but this is preferred modality either in older children or those with progression after initial chemotherapy.
- CTV = 1.0 cm expansion (pending 0221 results)
- Pseudoprogression can make interpreting post RT scans difficult
- Combined modality does not appear to improve outcome over RT alone but no randomized data. How to reconcile with recent RTOG 9802 data with PCV is not clear.